Streaming Multi-label Classification

نویسندگان

  • Jesse Read
  • Albert Bifet
  • Geoff Holmes
  • Bernhard Pfahringer
چکیده

This paper presents a new experimental framework for studying multi-label evolving stream classification, with efficient methods that combine the best practices in streaming scenarios with the best practices in multi-label classification. Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. We present a new experimental software that extends the MOA framework. Massive Online Analysis (MOA) is a software environment for implementing algorithms and running experiments for online learning from evolving data streams. It is released under the GNU GPL license.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

Efficient Multi-label Classification for Evolving Data Streams

Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. This paper proposes a new experimental framework for studying multi-label...

متن کامل

A novel online multi-label classifier for high-speed streaming data applications

In this paper, a high-speed online neural network classifier based on extreme learning machines for multi-label classification is proposed. In multi-label classification, each of the input data sample belongs to one or more than one of the target labels. The traditional binary and multi-class classification where each sample belongs to only one target class forms the subset of multi-label class...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Streaming Label Learning for Modeling Labels on the Fly

It is challenging to handle a large volume of labels in multi-label learning. However, existing approaches explicitly or implicitly assume that all the labels in the learning process are given, which could be easily violated in changing environments. In this paper, we define and study streaming label learning (SLL), i.e.labels are arrived on the fly, to model newly arrived labels with the help ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011